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A direct numerical simulation at resolution 2403 is used to obtain a statistically 
stationary three-dimensional homogeneous and isotropic turbulent field at a 
Reynolds number around 1000 (RA x 150). The energy spectrum displays an inertial 
subrange. The velocity derivative distribution, known to be strongly non-Gaussian, 
is found to be close to, but not, exponential. The nth-order moments of this 
distribution, as well as the velocity structure functions, do not scale with n as 
predicted by intermittency models. Visualization of the flow confirms the previous 
finding that the strongest vorticity is organized in very elongated thin tubes. The 
width of these tubes is of the order of a few dissipation scales, while their length can 
reach the integral scale of the flow. 

1. Introduction 
Understanding the structure in space of a turbulent flow, as well as its statistical 
properties, remains a challenge both for the experimentalist and the theoretician. In 
recent years, direct simulation, i.e. resolution of the basic fluid dynamics equations 
using the most powerful computers, has proved to be a valuable additional tool for 
the study of fully developed turbulence. For the range of parameters in which they 
are feasible, the direct simulations allow measurement of many quantities 
unaccessible in the laboratory. Also, visualization of the small-scale structures of the 
flow is in principle easier. High-resolution simulations in two space dimensions at 
Reynolds numbers of several thousands or more are now standard, and have revealed 
new and important properties of two-dimensional turbulence (Basdevant et al. 1981 ; 
McWilliams 1984; Herring & McWilliams 1985; Brachet et al. 1983 ; Benzi, Patarnello 
& Santangelo 1987). Early attempts a t  direct solution of the three-dimensional 
Navier-Stokes equation were restricted to modest Reynolds numbers (Orszag & 
Patterson 1972; Siggia & Patterson 1978; Siggia 1981). They have allowed a study 
of the dissipation-scale properties of a turbulent flow. It now becomes feasible, on 
computers of the latest generation, to reach Reynolds numbers at  which an inertial 
subrange of the energy spectrum exists (Kerr 1985; Yamamoto & Hosokawa 1988; 
She, Jackson & Orszag 1988, 1990). The object of the present paper is to study a more 
extended inertial subrange. 

Several questions were raised by the results from the above authors. For instance, 
these simulations have revealed (Siggia 1981) that the vorticity field is organized in 
very long and thin tubes, but one did not know whether these are purely dissipation- 
scale structures or they extend to larger scales. Another feature of turbulent flow 
found in the calculations of Kerr (1985) is the independence of the velocity 
derivatives skewness of the Reynolds number, contrary to predictions of the 
intermittency models. The scaling of fourth-order moments with Reynolds number 
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found by Kerr is also a t  variance with these models. It would be interesting to know 
whether this is still true at higher Reynolds numbers. It was also found in these 
calculations that the eigenvectors of the strain tensor correlate with vorticity. An 
explanation of the observed correlation is proposed in Ashurst et al. (1987), but a 
more detailed analysis seems required to verify it. 

In the following section, we present our calculations. I n  §§3 and 4, we give the 
results on statistical properties of the flow, and in $5 we describe the structure of the 
flow which emerges from our three-dimensional visualizations. 

2. The calculation 
We solve the Navier-Stokes equation for incompressible fluids in rotational form : 

aV 
- = v x w-V(p+@2)  + VV%+f, 
at 

with the continuity equation 
v-v = 0. 

Here v is the velocity field, o = V x u the vorticity, p the pressure, v the kinematic 
viscosity and f a force field. Since we are interested in (statistically) homogeneous 
turbulent flows, we take periodic boundary conditions in all directions, with period 
2n. I n  Fourier space the two equations can be combined to give 

where the tensor P is the projector on the space of solenoidal fields, defined as 

k k  
k2 

p,#) = 

A pseudospectral method is used to compute the right-hand side of this equation (see 
Gottlieb & Orszag 1977), i.e. aliasing is not removed. Removing it would increase the 
cost of the calculation by a factor FZ 2. To check that this was not necessary, we have 
redone part of our calculation (for several turnover times) with aliasing removed by 
the method outlined in Patterson & Orszag (1971), and we did not find any 
significant difference in the results. The importance of aliasing effects in pseudo- 
spectral methods is discussed in Orszag (1972). The time marching is done using 
a second-order finite-difference scheme. An Adams-Bashforth scheme is used for 
the nonlinear term while the dissipative term is integrated exactly. The resulting 
numerical scheme is 

To start (or restart) the calculation, we use a second-order Runge-Kutta scheme. 
The simplest way to force the flow in this geometry would be to take as a force field 

a white noise in time. This would allow us to control the energy injection rate, which 
in this case would be (f ”>. However, introducing some randomness externally 
through the forcing would prevent us from asking questions about the intrinsic 
chaotic behaviour of the flow, for instance by studying time series of the velocity or 
its derivatives a t  a given point. We therefore chose to  force the field in a deterministic 
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way, as was done by Kerr (1985). All Fourier modes with wavenumber components 
equal to 1 or 0 are forced with a constant amplitude f independent of k (the 
components of k take only integer values, since the space period is 27~). This results 
in large fluctuations of the energy injection rate ei = ( f - u ) .  Owing to these 
fluctuations and also to the discretization, one can only hope to  reach a steady-state 
regime in the sense that the mean kinetic energy density fluctuates in time around 
a constant value. 

The calculation presented here was done with 2403 Fourier components, and a 
viscosity of One time-step takes 12 s on a Cray-2, using the four processors. 
Integration over one turnover time (defined below) takes of the order of 4 h of 
Cray-2. The average speed-up obtained by using four processors instead of one is 2.5, 
since we never run in dedicated mode. 

To estimate the degree of isotropy of the flow, we use the same method as Curry 
et al. (1984). For each wavenumber k ,  we define two unit vectors e,(k) and e,(k) ,  
which, with k ,  form an orthogonal reference frame. Since k - u  = 0, each Fourier mode 
u(k) is defined by its two components in this frame v,(k) and v,(k). We define the 
isotropy I as 

I = [-)I. 
In the calculations presented here, I fluctuates by a few percent around 0.95. 
Therefore, our flow is close to statistically isotropic. 

Let us recall the definition of some characteristic quantities to be used in the 
following. These characteristic lengths are used : the integral scale 

J: k-lE(k) d k  

l0=:ism)ak9 

the Taylor microscale 

and the Kolmogorov dissipation scale 

where B is the mean energy dissipation rate per unit mass. The two characteristic 
timescales of homogeneous turbulence are the eddy turnover time 

7 0  = 4l/vo, 

7, = g / v .  

where vo is the root-mean-square velocity, and the dissipation time 

With these quantities one can define two Reynolds numbers : the integral-scale 
Reynolds number R = volo/v, and the Taylor-microscale Reynolds number R, = 
Avo/v. 
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1. Mean kinetic energy per unit mass versus time. The turnover time is 0.35. 

3. The spectra of the flow 
After integration over a few tens of turnover times we obtain a statistically 

stationary regime in the above sense. Figure 1 shows the mean kinetic energy per 
unit mass (+v") versus time. Our time unit is such that the large-eddy turnover time 
is 0.35 .  The total duration of our calculation is 60 turnover times. Only the second 
half of this time was used in our analysis, because i t  seems closer to a statistically 
steady state. The energy spectrum E ( k )  at a given time is defined as 

1 
E ( k )  = - 

k-i<lkl<k+f 

It is shown in figure 2 a t  time 14. A power-law range can be seen for k < 25, with an 
exponent a little larger than -5 .  The dashed line shows the same spectrum 
multiplied by kg. The fact that this is an inertial range is confirmed by inspection of 
the energy flux spectrum, shown in figure 3 .  The energy flux @ ( k )  is defined as 

@ ( k )  = T ( k ) d k ,  J: 
where T ( k )  is the energy transfer, which appears in the energy equation 

dE 
- ( k )  = F ( k )  + T ( k )  - 2vk2E(k)  
dt 

( 3 )  

(4) 

( P ( k )  is the energy injection spectrum). In  other words, @ ( k )  is the rate of energy 
transferred per unit mass by all modes with k' < k to modes with k' > k .  From 
equation ( 2 ) ,  the energy transfer is 

uk-P(k)-(u x o ) k d S Z ,  ( 5 )  
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FIGURE 2. Energy spectrum at a given timg (continuous curve). Same 
multiplied by kj (dashed curve). 

energy spectrum 

where the integration is over the angles in Fourier space. By definition, the energy 
flux is constant in the inertial range, which is seen in figure 3 to  occupy a little more 
than one decade in wavenumber space. The small increase in the energy spectrum a t  
the highest wavenumbers is due to  a lack of resolution for our Reynolds number 
R x 1000 (R, x 150). Note that this spurious tail in the spectrum does not disappear 
when aliasing is removed, but does only when the viscosity is increased by a large 
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X 

FIGURE 4. Probability distribution of a velocity component vz, normalized so that B = I ,  
shown together with a Gaussian distribution (dashed line). 

factor. This should certainly be done in a simulation devoted to the study of the 
dissipation subrange. But in the present work, we wanted to  focus on the inertial 
subrange. 

The energy spectrum does not vary significantly during the second half of our 
integration. By fitting this spectrum with the Kolmogorov form 

E ( k )  = C , e ~ k - ~ ,  (6) 

we obtain a value of 2 for the 'Kolmogorov constant' C,, which does not vary by 
more than 3% in the statistically steady-state period. This value of C, is a little 
larger than the experimental value % 1.5 (see Monin & Yaglom 1975 for references). 
Kerr (1990) has also found a larger value in numerical experiments a t  R, = 83. 

4. The statistical distribution of v and its derivatives 
It is generally assumed that turbulent flows are ergodic, and experimentalists use 

time distributions of a velocity component vi or its derivatives ai vj a t  a given space 
location to obtain probability distributions. Our time series are too short to apply the 
same method to our results. It seems more efficient to use space distributions, for 
which we have x 1.4 x lo7 grid point values a t  each time. Using approximately 100 
different times, we reach a total of z 1.4 x lo9 values. The resulting statistical 
distribution of v, is shown in figure 4, after being normalized so that r2 = (vi) = 1.  
It is compared to a Gaussian distribution, shown with a dashed line. The distribution 
we obtain is close to Gaussian, in agreement with what is known from experimental 
data (see Monin & Yaglom 1975 for a review), and from previous simulations 
(Schumann & Patterson 1978). 

Figure 5 shows the distribution of a,v,, known from experiments to be strongly 
non-Gaussian. Also shown is a Gaussian, again normalized so that = 1. It is seen 
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X 

FIGURE 5. Probability distribution of av,/ax normalized so that u = 1, shown together with a 
Gaussian distribution (dashed line). 

FIGURE 6. 
X 

Probability distribution of av,/ay normalized so that u = 1 ,  shown 
Gaussian distribution (dashed line). 

together with a 

that the distribution we obtain is closer to an exponential than to a Gaussian, but 
our statistical sample allows one to see a departure from an exponential law. The 
wings are indeed not straight lines in this linear-logarithmic plot. The distribution is 
more intermittent than an exponential distribution. Recently, Castaing, Gagne & 
Hopfinger (1990) have reported similar distributions from experimental data, and 
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FIGURE 7 .  Probability distribution of Sv,(r) = v , ( x + ~ ) - v , ( x )  for r = 0.05 (a dissipation scale), 
normalized so tha t  B = 1 ,  shown together with a Gaussian distribution (dashed line). 
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FIGURE 8. Same as figure 7 with r = 0.39, a t,ypical inertial-range scale 

Kraichnan (1990) has obtained them from a closure model. This curvature is even 
more pronounced for the distribution of lateral derivatives aYvz, shown in figure 6. 
It is known (see for instance She et al. 1988) that the large wings of these distributions 
are due mainly to small-scale velocity fluctuations. It is therefore important to check 
whether the non-exponential wings could come from a lack of resolution of our 
calculation. We have recomputed the distribution with a velocity field obtained by 
filtering the highest wavenumbers so that the non-physical tail (figure 2) disappears 
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in its energy spectrum. The wing curvature in plots analogous to the one in figures 
5 and 6 was still present. 

The moments of the distribution of a,v,, 

can be computed from the distribution shown in figure 5 .  We find a value of the 
skewness S, = -0.5. This agrees exactly with the value found by Kerr (1985) a t  
R, < 80, and confirms the tendency he found for S, to  be independent of the Reynolds 
number, a result at variance with intermittency models (Kolmogorov 1962 ; 
Oboukhov 1962; Novikov & Stewart 1964; Frisch, Sulem & Nelkin 1978). For the 
flatness factor S,, we find 5.9, a value which fits the curve given by Kerr (1985) from 
his points for R, < 80, and which has the analytical form S, - R;.l8. The values we 
find for S, and S,  are respectively 9 and 90. The lateral derivatives a, vx and a, vx do 
not have the same skewness and flatness. The skewness of the ayv, distribution is 
expected to be zero for a statistically isotropic field (see Monin & Yaglom 1975). It 
can be seen from figure 6 that the a,v, distribution is much more symmetric than 
that of a, v, (figure 5 ) ,  and this results in smaller odd-order moments. However, our 
turbulent field is close to, but not exactly, isotropic, and we find a value of -0.04 for 
this skewness. Concerning the flatness of a, vx, it was shown Sy Siggia (1981) that for 
a statistically isotropic flow there are only four independent fourth-order rotational 
invariants, and flatness factors can be expressed in terms of those. Therefore, the 
flatnesses of a,v, and ayvx are not necessarily equal. We find a value of 8 for the 
latter, larger than the 5.9 value of the former. 

We have also computed the distribution of velocity differences, 

6vx(r) = v,(x + r ,  t )  - v , (x) ,  

which depend only on r for homogeneous isotropic turbulence. Figure 7 shows the 
distribution of 6vx for r = 0.05, a value typical of the dissipation-range scales, while 
figure 8 shows the same for r = 0.39, a value which belongs to the inertial range. 
These distributions seem to display exponential wings. They are similar to the 
experimental distributions found by Anselmet et al. (1984) and Van Atta & Chen 
(1970). For the largest values of r ,  the distribution of 6vx is Gaussian. Therefore, when 
r goes from 0 to values > 1,  the 6v, distribution changes continuously from a 
function similar to the a,v, distribution (figure 5 )  to a Gaussian. For intermediate 
values of r the wings look exponential (figure 8). Our results do not rule out the 
possibility that they are indeed exponential for r in the inertial range. From these 
distributions, one can compute the velocity structure functions, defined as 

or the dimensionless structure functions, given by 

To estimate the maximum value of n for which this calculation can be done 
accurately, we use a method analogous to the one used by Anselmet et al. The 
structure functions are computed in two different ways : once with the distributions 
as they are, and a second time with a distribution obtained by extending the 
exponential wings to  plus and minus infinity. This gives a rough estimate of the error 
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FIQURE 9. Structure function of order 6, F,(r) = ([Sv,(r)]') as a function of r .  Note the power- 
law form for r in the inertial range ( r  > 0.2). 

due to our limited knowledge of these wings. For r in the inertial range, the two 
computed values agree to within a few percent for n < 20 and within 40% for n < 
30. A second test done by Anselmet et al. was to plot the structure function values 
versus sample size and check their convergence when the sample increases. We have 
done this and found convergence for structure functions of order < 30, with our 
sample of 1.4 x 10' values. Figure 9 shows an example of structure functionf,(r). In 
the inertial-range values of r ( r  > 0.2) this function is indeed a power law. This is 
typically the case for all even values of n. Note that the structure functions are much 
more accurately computed for even values of n than for odd values, since the 
integrand is definite positive in the former case while in the latter, the positive and 
negative 6v, parts of the integral are of opposite sign. We therefore rely on the even 
structure functions in the following. 

Intermittency models of turbulence predict power-law forms of the structure 
functions for r in the inertial range 

Fn(r) - rcn  (10) 

with given by 5 n ="--' 3 n n - 3 )  ( (11) 

5, = h - 3 4 n - 3 )  (12) 

in the case of the Kolmogorov-Oboukov log-normal (LN) model, and 

in the case of the P-model (Frisch et al. 1978; Novikov & Stewart 1964). Both 
predictions coincide for n = 6 ,  for which 6, = 2-p. The dimensionless structure 
function fn(r) also has a power law form with 6, = [,-$;n6,. Figure 10 shows 6, 
as a function of n,  and compares it with the predictions of the LN model, the P-model 
and the Kolmogorov (1941, 1962) theory (p = 0, c,, = in) .  It is seen that none of the 
predictions fits our results. This figure is similar to figure 14 of Anselmet et al. (1984), 
who drew the same conclusion from their experimental data. Note that their 
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n 

FIGURE 10. Power-law exponent 5, of the structure functions F,,(r) - fin as a function of n. 
_ _ _  , prediction of the Kolmogorov (1941) theory ; - -  - -, /l-model ; -, Kolmogorov (1962) model ; 
+ , values from our simulation ; x , experimental values of Anselmet et al. (1984) for R, = 852. 

Reynolds number R, > 500 is much larger than ours. Both the experimental data 
values and our results are closer to the LN than to the P-model curve. However, we 
do not observe any maximum of c,, followed by a decrease, as given by equation (1 1) 
for large n. More recently, a ‘multifractal model’ was proposed by Parisi & Frisch 
(1984). This model does not make a firm prediction of the shape of Cn, but states that 
6, is the Legendre transform of D(h) ,  the fractal dimension of the set of singularities 
of u with exponent h. (See Bacry et al. 1990.) A test of this model would be a proof 
that these sets are indeed fractal. We did not attempt to do this in the present work, 
since it would require a knowledge of the function cn with very high accuracy, 
particularly a t  the highest and lowest n. 

The value we find for ,u = 2-c6 is 0.20, in agreement with the value found in the 
laboratory by Anselmet et al., also using c6. In  the above models, the parameter y is 
identified with the power-law exponent of the dissipation-rate correlation 

(€(X + r )  €(X)) - (y . 
We can obtain y directly through (13). The value of this correlation versus r is given 
in figure 11. The value of y inferred from the slope in theinertial range ( r  > 0.2) is 
not very accurately determined, and approximately equal to 0.13, a value lower than 
the one obtained above. Note that the coefficient y found using (11) or (12) with 
n = 6 is a pure inertial-range quantity, while this is not so for the exponent appearing 
in (13), even for r in the inertial range (Kraichnan 1974). It is therefore possible that 
they are different. 

To check the validity of our statistical analysis, we have divided our sample into 
two equal sets and redone the analysis for each set. The probability distributions look 
very similar. The exponent ,u in (11) is close t o  0.25 in the first sample, and to  0.15 
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FIQVRE 11. Energy dissipation correlation <E(x+ r )  E ( x ) )  versus r a t  the end of our calculation. 
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FIGURE 12. Probability distribution of loge(x), where E is the energy dissipation per unit mass, 
normalized so that r~ = 1, shown together with a Gaussian distribution (dashed line). 

in the second. This is probably a consequence of the large fluctuations produced by 
our forcing. 

An independent test of the LN model is a direct verification of Kolmogorov's third 
hypothesis, which states that the distribution of a, the energy dissipation rate per 
unit mass, is log-normal (Kolmogorov 1962). We have plotted in figure 12 the 
distribution of log 8, together with a properly normalized Gaussian (dashed line). One 
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X 

FIGURE 13. View of the vorticity field, represented by a vector of length proportional to the 
vorticity amplitude a t  each grid point. Only vectors larger than a given threshold value are shown. 

can see that the distribution is definitely not normal, although it is close to normal 
for small fluctuations of logs. 

5. The spatial structure of the flow 
Figure 13 shows a three-dimensional picture of the vorticity field. The vorticity a t  

each grid point is represented by a vector, here so small that individual vectors can 
hardly be seen. Vectors are only plotted if their modulus is larger than a given 
threshold. By varying this threshold and rotating the figure on a graphic workstation 
screen we can explore the structure of the field in detail. One can see that the 
vorticity is organized in thin elongated tubes, as previously reported by Siggia 
(1981), Kerr (1985), She et al. (1990). Figure 14 shows the effect of lowering the 
threshold, and therefore letting smaller amplitude vorticity vectors appear. The 
length of these tubes seems to be of order 1, i.e. of the same order as the integral scale 
(the cube size is 2n). Their thickness is of the order of a few dissipation scales, here 
a few grid points. This is confirmed by a more detailed analysis. Figure 15 shows a 
cut through a typical vorticity tube, and shows clearly that its characteristic 
thickness is a few grid points. The dissipation scale I , ,  in our simulation, is of the 
order of the mesh size, while the Taylor microscale is approximately ten mush sizes. 
Therefore, the characteristic tube thickness seems to be intermediate between these 
two lengths. Figure 16 shows a detailed view of a vorticity tube. It displays a sub- 
cube one sixth the Bize of the complete one, with 40 grid points on each side. Similar 
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FIGURE 14. Same as in figure 13, but with a lower threshold value, and therefore more 
vectors represented. 

-40 - 

-50 - 

-60 - 

FIGURE 15. Cut through a typical vorticity tube along a direction perpendicular to its axis. 
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FIGURE 16. Detail of the vorticity field, showing a sub-cube of size one sixth of the complete 
cube, i.e. 40 grid points in each direction. 

plots for the velocity field show mainly the forcing field if one uses a high threshold. 
But when the highest velocities are eliminated, the tubes are clearly visible. 

From these visualizations, one is lead to the conclusion that these vorticity tubes, 
which seem to be the basic structure of three-dimensional homogeneous turbulence, 
involve all the scales of the flow. We have made the same kind of picture of the 
vorticity field after removing all dissipation-range scales. A smooth filter is applied 
in Fourier space in order to avoid spurious fluctuations. The large scales to which the 
forcing is applied were also removed. Figure 17 shows the same sub-cube as figure 16 
when only inertial-range scales are left. One can see the external regions of the tubes. 
Some helical structure can be seen, as noted by She et aE. (1990). 

We have examined the shape of many of these tubes in order to see whether they 
are in fact rolled-up vorticity sheets, as suggested by Lundgren (1982), but this does 
not seem to be the case. Figure 18 gives an example of the projection of the velocity 
field on a plane perpendicular to a vorticity tube, while figure 19 shows the curves 
of constant vorticity on such a plane. As one can see from these figures, there is little 
evidence of spiral structure, or any other two-dimensional structure. A turbulence 
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FIGURE 17. Same vorticity tube as in figure 6, but showing only inertial-subrange scales. 
Dissipation and energy-injection scales have been removed by filtering in Fourier space. 

model based on a collection of vorticity tubes is presented in Tennekes (1968). This 
model predicts a a,v, skewness S,  independent of R,, which is what is found in 
numerical simulations (see above, §4), but also a flatness S,  - R,, contrary to the 
result by Kerr (1985) and ourselves, which gives 8, - Rj(.lB. 

Space correlations between vorticity and rate of strain were reported by Kerr 
(1985). At each grid point, we compute the eigenvalues A,, A,, A, of the rate-of-strain 
tensor Sii = $(aivj+ajvi) ,  with A, always negative and A, always positive ( V - u  = 0 
implies A, + A, + A,  = 0). The intermediate eigenvalue A, is found to be positive in 
approximately two thirds of the cases, in agreement with the results of the analysis 
of Kerr (1985) and Ashurst et al. (1987). Three-dimensional plots of the eigenvector 
fields, are used to  study the correlations with vorticity. Let us call the eigenvectors 
associated with A,, A,, A, respectively el,  e2, e,, each eigenvector being given the 
amplitude and sign of its associated eigenvalue. Figure 20 (plate 1)  shows the field e, 
(in red) together with the vorticity field (in blue). Again, only vectors above a certain 
amplitude threshold are displayed, and therefore the two fields are not generally 
shown a t  the same grid points. The highest rate of strain is seen to be generally in 
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FIQURE 18. Projection of the velocity field on a plane perpendicular to a particular 
vorticity tube. 

17 

FIGURE 19. Curves of constant vorticity in a plane perpendicular to a selected vorticity tube. 
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FIGURE 23. Distribution of the angle between the vorticity field and the rate of strain eigenvectors : 
(a) eigenvector e,, associated with the smallest eigenvalue A1 (always negative) ; ( b )  eigenvector e2, 
associated with the intermediate eigenvalue A, (curve 1 for A, < 0, curve 2 for all A, values, curve 
3 for A, > 0) ; ( c )  eigenvector e3, associated with the largest eigenvalue A, (always positive). 

the vicinity of vorticity tubes. The eigenvector e3, associated with the positive 
eigenvalue, i.e. the stretching direction, is perpendicular to the vorticity. Note on the 
upper right of the picture, a vorticity tube seen along its axis, and on the left some 
tubes seen from the side, and the perpendicular field e3 in their vicinity. Figure 21 
(plate 1 )  is analogous to figure 20 but for el, the eigenvector associated with the 
negative eigenvalue of the strain, which is also seen to be perpendicular to the 
vorticity. The same tubes as before are seen, with the field el perpendicular to them. 
Figure 22 (plate 2) shows again the same view of the vorticity, with this time the 
intermediate eigenvector e,. This eigenvector is the one which is generally aligned 
with vorticity. It is difficult to see this for the previously mentioned vorticity tube 
seen along its axis, but it is clear for the tubes seen from the side. No clipping was 
available on the program used to  produce these pictures, and this makes them a little 
confusing, owing to the excess of vectors in the background. Our conclusions are 
drawn from a fully three-dimensional examination of the flow using rotation. We 
could not find an example of e3 aligned with vorticity. Note however that, up to now, 
our study has been biased towards high-vorticity regions. Different correlations 
might be seen when one examines low-vorticity structures. 
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FIGURE 20. Vorticity field, in blue, and eigenvector e, associated with the largest (positive) eigenvalue, 
in red. Note in the upper right part of the figure the vorticity tube Seen along its axis. 

FIGURE 21. Vorticity field, in blue, and eigemector e, associated with the smallest (negative) eigenvalue, 
in red. Note in the upper right part of the figure the same vorticity tube as in figure 12. 

VINCENT & MENEGUZZI (Wcing p. 18) 
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FIGURE 22. Vorticity field, in blue, and eigenvector e2 associated with the intermediate eigenvalue, in red. 

VINCENT & MENEGUZZI 
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A more quantitative picture of the alignment between the strain eigenvectors and 
vorticity is given by the distribution of the cosine of the angles between w and e,, 
e2,e3, shown in figure 23. In the case of e,, we give separately the distribution for 
A, < 0 (curve l) ,  A, > 0 (curve 3), and the complete distribution (curve 2). We find 
A, > 0 in 75 % of the cases. Our figure 23 is strikingly similar to  figure 10 of Tsinober, 
Kit & Dracos (1991), obtained from experimental data. 

Thc general alignment of vorticity with e, reflects the quasi-two-dimensionality of 
the vortex tubes. Indeed, in two dimensions, A, = 0, A, = -Al  and w would be 
perpendicular to  the plane (el, e,). A discussion of this correlation of vorticity with 
the intermediate rate-of-strain direction is presented in Ashurst et al. (1987), where 
an explanation is propgsed using a model due to  Vieillefosse (1982, 1984). According 
to calculations using this model, a vorticity tube is created along the direction of 
maximum stretching e3, but very soon becomes aligned with e,. We are presently 
trying to verify this explanation by following a vorticity tube back in time until the 
time of its formation. Our preliminary impression is that the tubes are generated by 
an instability of the Kelvin-Helmholtz type. If this is the case, the above picture 
would not be correct. The results of this investigation will be presented in a 
forthcoming paper. 

6. Conclusion 
We have obtained a turbulent homogeneous flow at R, x 150 and an inertial 

subrange more extended than in previous tri-dimensional simulations. The statistics 
of the velocity derivatives are strongly non-Gaussian both in the inertial and the 
viscous subranges. The distributions of velocity derivatives are more intermittent 
(i.e. have larger wings) than an exponential distribution. For the inertial-subrange 
scales, the distributions of velocity differences we obtain are consistent with 
distributions having exponential wings. The intermittency exponent p is found to be 
0.25. The log-normal and P-models of intermittency do not predict the nth-order 
structure-function scaling with n which we find. In  addition, the Kolmogorov 
hypothesis of log-normality of the energy dissipation fluctuations is not confirmed by 
our calculations. 

In physical space, we confirm the discovery by Siggia (1981) that the vorticity is 
organized in thin tubes. We find that the thickness of these tubes is intermediate 
between the dissipation scale and the Taylor microscale, while their length is 
comparable with the integral scale of the flow. Therefore, the picture of intermittency 
that emerges in physical space from our simulations is that  all the scales present in 
the flow are correlated through these elongated structures. We confirm the results by 
Kerr (1985) that the vorticity is generally aligned with the strain eigenvector 
corresponding to  the intermediate eigenvalue. But the precise determination of the 
mechanism by which these vorticity tubes are generated and their detailed dynamical 
evolution reqdires further study. 

We are indebted to  R. Kerr, J. Herring, Z. S. She, E. Jackson, S. A. Orszag, M. E. 
Brachet, P. L. Stilem, U. Schumann, M. Nelkin, M. E. McIntyre and A. Tsinober for 
numerous suggestiohs and discussions. The calculations presented were done on the 
Cray-2 of CCVR (Centre de Calcul Vectoriel pour la Recherche), Palaiseau, France. 
The main routine used in all our calculations is the Fast Fourier Transform of the 
Cray-2 library, which is a C. Temperton FFT adapted for this machine by Cray- 
Research. The NCAR graphics software has been used extehsively. 
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